Prof. Dr. sc. nat. Thomas Meier

Career

Thomas Meier grew up in Schaan and graduated from the Liechtenstein Gymnasium in Vaduz in 1993. He then studied biology at ETH Zurich, specialising in microbiology, immunology, cell biology, genetics and plant physiology, and attended courses in didactics and education. He completed his doctorate in 2002 at the Institute of Microbiology at ETH Zurich. From 2006, he conducted research as a group leader at the Max Planck Institute of Biophysics in Frankfurt am Main in the field of structural biology and bioenergetics before accepting a professorship and the Chair of Structural Biology at the Department of Life Sciences at Imperial College London in 2015. From 2017 to 2021, he directed the Centre of Excellence for Structural Biology at Imperial College.


Prof. Dr. sc. nat. Thomas Meier has been Director of the Liechtenstein Institute since 1 November 2023.
 

Research

Thomas Meier’s research projects at his previous places of work focussed on the biochemical and structural (imaging) investigation of energy-providing processes at the cell boundary (membrane) of animals, plants and bacteria. Of central importance here is the enzyme “ATP synthase”, a protein complex that uses charged particles (ions) as an energy source to produce the molecule adenosine triphosphate (ATP), the universal energy supplier in all living cells. ATP synthase works like a turbine in a power station with a rotor that transports the ions across the membrane and a stator that converts the rotational energy into ATP. Nota bene: Every person produces almost their own body weight of ATP molecules every day and at the same time uses it up again for energy-consuming processes, such as muscle or brain activity.
 

Thomas Meier’s work has contributed significantly to the functional understanding of the mechanism of this smallest but highly efficient “ion motor”. It also forms a basis for understanding the mechanism of action of selected antibiotics (e.g. bedaquiline) or the development of new drugs against multiple resistances in infectious diseases, e.g. tuberculosis or pneumonia. His work also provides a molecular understanding of certain inherited defects in cellular energy supply in mitochondria (the “power stations” in cells), which can lead to serious neurodegenerative diseases such as Leigh syndrome. Furthermore, his laboratory was able to make a significant contribution to the understanding of energy conversion and regulation of photosynthesis with the first high-resolution (atomic) structural description of the complete ATP synthase from plants.

Thomas Meier’s scientific publications are recognised in international scientific journals, e.g. Science, Nature Communications, PNAS and EMBO Reports. He gives numerous lectures at conferences, universities, and research institutes, organises conferences and regularly prepares expert reports for research funding bodies and scientific journals. He has worked as a consultant and collaborator for the pharmaceutical companies Roche and Johnson&Johnson. His research togehter with his team has been funded by third-party funders such as the German Research Foundation (DFG) and Wellcome UK, and reached approximately 10 million Swiss francs (including his collaborative/consortia projects). He is internationally networked with collaboration partners and research colleagues and has received various awards for his work. In 2006 he was honoured with the Swiss Society of Microbiology Award and in 2016 with the Wellcome UK Investigator Award.
 

List of Publications (2001–2024)

*corresponding author

underlined: Member of the Meier research group (ETH Zürich, Max-Planck-Institut für Biophysik, Frankfurt, Imperial College London)

1. Adolph C., Cheung C.Y., McNeil M.B., Jowsey W.J., Williams Z.C., Hards K., Harold L.K., Aboelela A., Bujaroski R.S., Buckley B.J., Tyndall J.D.A., Li Z., Langer J.D., Preiss L., Meier T., Steyn A.J.C., Rhee K.Y., Berney M., Kelso M.J., Cook* G.M. (2024). A dual-targeting succinate dehydrogenase and F1Fo-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem. Biol. S2451-9456(23)00432-4.

2. Yamamoto, H., Cheuk, A., Shearman, J., Nixon, P.J., Meier, T., Shikanai*, T. (2023). Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts. Plant Phys., 192(2):1221-1233. 

3. Hards, K., Cheung, C.Y., Waller, N., Adolph, C., Keighley, L., Tee, Z.S., Harold, L.K., Menorca, A., Bujaroski, R.S., Buckley, B.J., Tyndall, J.D.A., McNeil, M.B., Rhee, K.Y., Opel-Reading, H.K., Krause, K., Preiss, L., Langer, J. D., Meier, T., Hasenoehrl, E.J., Berney, M., Kelso, M.J., Cook*, G.M. (2022). An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Commun. Biol. 5, 166.

4. Meier-Credo, J., Preiss, L., Wüllenweber, I., Resemann, A., Nordmann, C., Zabret, J., Suckau, D., Michel, H., Nowaczyk, M.M., Meier, T., and Langer*, J.D. (2022). Top-down identification and sequence analysis of small membrane proteins using MALDI-MS/MS. J. Am. Soc. Mass Spectrom. 33, 1293-1302. 10.1021/jasms.2c00102.

5. Demmer, J.D., Phillips, B.P., Uhrig, O.L., Filloux, A., Allsopp, L., Bublitz, M. and Meier*, T. (2022) Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii. Sci. Adv., 8:eabl5966.


6. Cheuk, A. & Meier*, T. (2021). Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Biochem. Soc. Trans. 49: 541-550.


7. Blum, T., Hahn, A., Meier, T., Davies, K.M., Kühlbrandt*, W. (2019). Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc. Natl. Acad. Sci. U.S.A. pii: 201816556.


8. Krasnoselska, G.O., Meier*, T. (2018). Purification and reconstitution of Ilyobacter tartaricus ATP synthase. Methods Mol. Biol. 1805: 51-71. 


9. ​​​​​Hahn, A., Vonck, J., Mills, D.J., Meier*, T., and Kühlbrandt*, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science (2018). 360(6389). pii: eaat4318.


10. Dautant, A., Meier*, T., Hahn, A., Tribouillard-Tanvier, D., Di Rago, J.-P., and Kucharczyk* (2018). ATP Synthase Diseases of Mitochondrial Genetic Origin. Front. Physiol. 9: 1-16.


11. Eisel, B., Hartrampf, F.W.W., Meier*, T., Trauner*, D. (2018) Reversible optical control of F1Fo -ATP synthase using photoswitchable inhibitors. FEBS Lett., 592: 343-355.


12. Schulz, S., Wilkes M., Mills D.J., Kühlbrandt* W., Meier*, T.. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep., (2017) 18: 526-535.


13. He, C., Preiss, L., Wang, B., Fu, L., Wen, H., Zhang, X., Cui, H., Meier*, T., Yin*, D. (2017). Structural simplification of Bedaquiline: the discovery of 3-(4-(N,N-Dimethylamino­methyl)­phenyl)quinoline-derived antitubercular lead compounds. Chem. Med. Chem., 12, 106-119.


14. Hahn, A., Parey, K., Bublitz, M., Mills, D.J., Zickermann, V., Vonck, J., Kühlbrandt*, W., and Meier*, T. (2016). Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol. Cell 63, 445-456.


15. Preiss, L., Hicks, D.B., Suzuki, S., Meier, T., and Krulwich*, T.A. (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Frontiers Bioeng. Biotechnol. 3, 75.


16. Preiss, L., Langer, J.D., Yildiz, Ö., Eckhardt-Strelau, L., Guillemont, E.G., Koul, A., Meier*, T. (2015) Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv. 1, e1500106.


17. Leone, V. Pogoryelov, D., Meier, T., Faraldo-Gómez*, J.D. (2015) On the principle of ion selectivity in Na+/H+-coupled membrane proteins: experimental and theoretical studies of an ATP-synthase rotor. Proc. Natl. Acad. Sci. U.S.A., 112: E1057-1066.


18. Matthies, D., Zhou W., Klyszejko, A.L., Anselmi, C., Yildiz, Ö., Brandt, K., Müller, V., Faraldo-Gómez* J.D. & Meier*, T. (2014) High-resolution structure and mechanism of a Na+-coupled F/V-hybrid ATP synthase rotor ring. Nat. Comm., 5:5286.


19. Preiss, L., Langer, J.D., Hicks, D.B., Liu J., Yildiz ‚Ö., Krulwich, T.A., Meier*, T. (2014) The c-ring ion-binding site of ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic lifestyle. Mol. Microbiol., 92, 973-984.


20. Meier*, T. and Pogoryelov, D. (2013) ATP synthase structure and function: Encyclopedia of Biophysics (Edited by G.C.K. Roberts), Springer Verlag.


21. Halang P., Leptihn S., Meier T., Vorburger* T., Steuber* J. (2013) The function of the Na+-driven flagellum of Vibrio cholerae is determined by osmolality and pH. J. Bacteriol., 95, 4888-4899.


22. Schulz S., Iglesias-Cans M., Krah A., Yildiz Ö., Leone V., Matthies D., Cook G.M., Faraldo-Gómez* J.D., Meier* T. (2013) A new type of Na+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. PLoS Biol., 11, e1001596.


23. Preiss L., Klyszejko A.L., Hicks D.B., Liu J., Fackelmayer O.J., Yildiz Ö., Krulwich T.A., Meier* T. (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacilllus pseudofirmus OF4. Proc. Natl. Acad. Sci. U.S.A., 110, 7874-7879.


24. Hakulinen, J., Klyszejko, A.L., Hoffmann, J., Eckhardt-Strelau, L., Brutschy, B., Vonck*, J., Meier*, T., (2012) A structural study on the architecture of the bacterial ATP synthase Fo motor. Proc. Natl. Acad. Sci. U.S.A., 109, E2050-2056.


25. Pogoryelov*, D., Klyszejko, A.L., Krasnoselska, G., Heller, E.-M., Leone, V., Langer, J.D., Vonck, J., Muller, D.J., Faraldo-Gómez, J.D., Meier*, T., (2012) Engineering rotor ring stoichiometries in the ATP synthase. Proc. Natl. Acad. Sci. U.S.A., 109, E1599-1608.


26. Symersky, J., Pagadala, V., Osowski, D., Krah, A., Meier, T., Faraldo-Gómez*, J,D., Mueller*, D. (2012) Structure of the proton pore c10 ring of the yeast mitochondrial ATP synthase in the open conformation. Nat. Struct. Mol. Biol., 19, 485-491.


27. Hammann, E., Zappe, A., Keis, S., Ernst, S., Matthies, D., Meier T., Cook, G.M., Börsch*, M., (2012) Step size of the rotary proton motor in single FoF1-ATP synthase from a thermoalkaliphilic bacterium by DCO-ALEX FRET. SPIE proceedings, 8228, 82280A-15.


28. Meier*, T., Faraldo-Gómez, J.D. and Börsch, M. (2011) ATP synthase: A paradigmatic molecular machine. Molecular Machines in Biology (Edited by J. Frank), Cambridge University Press.


29. McMillan, D.G., Ferguson, S.A., Dey, D., Schröder, K., Aung, H.L., Carbone, V., Attwood, G.T., Ronimus, R.S., Meier, T., Janssen, P.H., Cook*, G.M. (2011) A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions. J. Biol. Chem., 286, 39882-39892.


30. Matthies, D., Haberstock, S., Joos, F., Dötsch, V., Vonck, J., Bernhard, F. and Meier*, T. (2011) Cell-free expression and assembly of ATP synthase. J. Mol. Biol., 413, 593-603.


31. Kalamorz, F., Keis, S., McMillan, D.G., Olsson, K, […], Matthies, D., Preiss, L., Meier, T., Brown, S.D. and Cook*, G.M. (2011) Draft genome sequence of the thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1. J. Bacteriol., 193, 4290-4291.


32. Liu, J., Fackelmayer, O.J., Hicks, D.B., Preiss, L., Meier, T., Sobie, E.A. and Krulwich*, T.A. (2011) Mutations in a helix-1 motif of the ATP synthase c-subunit of Bacillus pseudofirmus OF4 cause functional deficits and changes in the c-ring stability and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry, 50, 5497-5506.


33. Pogoryelov, D., Krah, A., Langer, J.D., Yildiz, Ö., Faraldo-Gómez*, J.D. and Meier*, T. (2010) Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nat. Chem. Biol., 6, 891-899.


34. Hoffmann, J., Sokolova, L., Preiss, L., Hicks, D.B., Krulwich, T.A., Morgner, N., Wittig, I., Schägger, H., Meier*, T. and Brutschy*, B. (2010) ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry. Phys. Chem. Chem. Phys., 12, 13375-13382.


35. Preiss, L., Yildiz Ö., Hicks, D.B., Krulwich, T.A. and Meier*, T. (2010) A new type of proton coordination in an F1Fo-ATP synthase rotor ring. PLoS Biology, 8, e1000443.


36. Krah, A., Pogoryelov, D., Langer, J.D., Bond, P.J., Meier*, T., Faraldo-Gómez*, J.D. (2010) Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors. Biochim. Biophys. Acta, 1797, 763-772.


37. Krah, A., Pogoryelov, D., Meier*, T., Faraldo-Gómez*, J.D. (2010) On the structure of the proton-binding site in the Fo rotor of chloroplast ATP synthases. J. Mol. Biol., 395, 20-27.


38. Pogoryelov, D., Yildiz, Ö., Faraldo-Gómez, J.D. and Meier*, T. (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat. Struct. Mol. Biol., 16, 1068-1073.


39. Meier*, T., Krah, A., Bond, P.J., Pogoryelov, D., Diederichs, K. and Faraldo-Gómez*, J.D. (2009) Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J. Mol. Biol., 391, 498-507.


40. Matthies, D., Preiss, L., Klyszejko, A.L., Muller, D.J., Cook, G.M., Vonck, J. and Meier*, T. (2009) The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J. Mol. Biol., 388, 611-618.


41. Morgner, N., Hoffmann, J., Barth, H.-D., Meier*, T. and Brutschy*, B. (2008) LILBID-mass spectrometry applied to the mass analysis of RNA polymerase II and an F1Fo-ATP synthase. Int. J. Mass Spectrom., 277, 309-313.


42. Pogoryelov, D., Nikolaev, Y., Schlattner, U., Pervushin, K., Dimroth, P. and Meier*, T. (2008) Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus. FEBS J., 275, 4850-4862.


43. Fritz, M., Klyszejko, A.L., Morgner, N., Vonck, J., Brutschy, B., Muller, D.J., Meier*, T. and Müller*, V. (2008) An intermediate step in the evolution of ATPases: a hybrid F0-V0 rotor in a bacterial Na+ F1F0 ATP synthase. FEBS J., 275, 1999-2007.
 

44. Meier*, T., Morgner, N., Matthies, D., Pogoryelov, D., Keis, S., Cook*, G.M., Dimroth, P. and Brutschy*, B. (2007) A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol. Microbiol., 65, 1181-1192.


45. Pogoryelov, D., Reichen, C., Klyszejko, A.L., Brunisholz, R., Muller, D.J., Dimroth, P. and Meier*, T. (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J. Bacteriol., 189, 5895-5902.


46. Dimroth*, P., von Ballmoos, C. and Meier, T. (2006) Catalytic and mechanical cycles in F-ATP synthases. EMBO Rep., 7, 276-282.


47. Meier*, T., Ferguson, S.A., Cook, G.M., Dimroth, P. and Vonck, J. (2006) Structural investigations of the membrane-embedded rotor ring of the F-ATPase from Clostridium paradoxum. J. Bacteriol., 188, 7759-7764.


48. Meier*, T., Yu, J., Raschle, T., Henzen, F., Dimroth*, P. and Müller, D.J. (2005) Structural evidence for a constant c11 ring stoichiometry in the sodium F-ATP synthase. FEBS J., 272, 5474-5483.


49. Pogoryelov, D., Yu, J., Meier*, T., Vonck, J., Dimroth, P. and Muller*, D.J. (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep., 6, 1040-1044.


50. Meier, T., Polzer, P., Diederichs*, K., Welte, W. and Dimroth*, P. (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science, 308, 659-662.


51. Dimroth*, P., von Ballmoos, C., Meier, T. and Kaim, G. (2003) Electrical power fuels rotary ATP synthase. Structure, 11, 1469-1473.


52. Meier, T., Matthey, U., von Ballmoos, C., Vonck, J., Krug von Nidda, T., Kühlbrandt, W. and Dimroth*, P. (2003) Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J. Mol. Biol., 325, 389-397.


53. Müller*, D.J., Engel, A., Matthey, U., Meier, T., Dimroth, P. and Suda, K. (2003) Observing membrane protein diffusion at subnanometer resolution. J. Mol. Biol., 327, 925-930.


54. Meier, T., von Ballmoos, C., Neumann, S. and Kaim*, G. (2003) Complete DNA sequence of the atp operon of the sodium-dependent F1Fo ATP synthase from Ilyobacter tartaricus and identification of the encoded subunits. Biochim. Biophys. Acta, 1625, 221-226.


55. Vonck, J., von Nidda, T.K., Meier, T., Matthey, U., Mills, D.J., Kühlbrandt*, W. and Dimroth*, P. (2002) Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J. Mol. Biol., 321, 307-216.


56. Meier, T. and Dimroth*, P. (2002) Intersubunit bridging by Na+ ions as a rationale for the unusual stability of the c-rings of Na+-translocating F1F0 ATP synthases. EMBO Rep., 3, 1094-1098.


57. von Ballmoos, C., Meier, T. and Dimroth*, P. (2002) Membrane embedded location of Na+ or H+ binding sites on the rotor ring of F1F0 ATP synthases. Eur. J. Biochem., 269, 5581-5589.


58. Müller, D.J., Dencher, N.A., Meier, T., Dimroth*, P., Suda, K., Stahlberg, H., Engel, A., Seelert, H. and Matthey, U. (2001) ATP synthase: constrained stoichiometry of the transmembrane rotor. FEBS Lett., 504, 219-222.


59. Meier, T., Matthey, U., Henzen, F., Dimroth*, P. and Müller, D.J. (2001) The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett., 505, 353-356.


60. Stahlberg, H., Müller, D.J., Suda, K., Fotiadis, D., Engel, A., Meier, T., Matthey, U. and Dimroth*, P. (2001) Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep., 2, 229-233.

Teaching

During his doctoral thesis and as a postdoc at ETH Zurich, Thomas Meier took part in basic practical courses in microbiology. At the Goethe University Frankfurt, he took part in the basic lecture in metabolism (biochemistry) as a lecturer from 2006 and participated in the practical course in microbiology. From 2015, he organised a biochemistry course module in applied molecular biochemistry at Imperial College London and gave lectures, tutorials and practicals in structural biology, bioenergetics, molecular biology and microbiology. He also offered annual laboratory projects in his own lab for the Bachelor’s and Master’s degree programmes. By summer 2023, 24 Bachelor’s, 24 Master’s and 12 PhD students had completed their work in his laboratory.

Curriculum Vitae

                                                                    

Education
2002 Doctor of Natural Sciences (Dr. sc. nat. ETH) with distinction / ETH-Medal, ETH Zurich
1998–2002 Doctorate at the Institute of Microbiology, ETH Zurich (Mentor: Prof. Dr. Peter Dimroth)
1998 Diploma in Biology (Dipl. Natw. ETH), Final subjects: Genetics, Immunology, Microbiology, Plant Physiology and Cell Biology
1997–1998 Courses “Higher Teaching Qualification”, two semesters didactics and pedagogy, ETH Zurich
1993–1998 Biology studies, ETH Zurich
1993

Matura, type B

1985 –1993 Liechtenstein Gymnasium, Vaduz

                                                                    

Professional Career 
since 11.2023 Director of the Liechtenstein Institute
2015–2023 Chair in Structural Biology, Department of Life Sciences, Imperial College, London
2017–2021 Director, Centre for Structural Biology, Imperial Centres of Excellences, Imperial College, London
2006–2015 Group Leader at the Max Planck Institute of Biophysics, Frankfurt am Main
2005–2006 Group Leader at the Institute for Microbiology, ETH Zurich
2002–2004

Postdoctoral researcher at the Institute of Microbiology, ETH Zurich