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Abstract

Despite the rich stream of research that evolved from Hotellings spatial compe-

tition model, the fact that firms’ strategies are constrained by their technological

capabilities, the legal environment, or overriding corporate strategies is commonly

neglected. We study a model of Hotelling-Downs competition in which two firms

choose a position along a one-dimensional market given that their feasible posi-

tions are restricted to an interval. Strategy restrictions turn out to substantially

affect firms’ behavior and consumers’ surplus. In contrast to existing results on spa-

tial competition, we find that in equilibrium firms may minimally differentiate away

from the center of the market or even locate completely independently of consumers’

preferences. Assessing social welfare by total transportation costs we observe that

restrictions may both enhance and reduce welfare, depending on whether the feasible

positions overlap.
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1 Introduction

The design of new products is a key task for firms in virtually any industry. As an exam-

ple, consider Samsung’s tablet device called ‘Galaxy’ which is characterized by a certain

size, screen resolution, and functionality. The ongoing ‘patent war’ between Samsung and

Apple (see Cusumano, 2013) illustrates that the choice of these product specifications

cannot be seen independently of Samsung’s technological capabilities, which are further

restricted by several patents on the competitor product ‘iPad‘. Generally, product spec-

ification choices have to account for (technological, legal and other) constraints, for the

competitor’s products, and for the preferences of the consumers. While economic models

of product differentiation incorporate heterogeneous consumer preferences and strategic

behavior in the face of competition, they usually abstract from constraints of feasibility.

Indeed, the models following the Hotelling-Downs approach of product differentiation fo-

cus on the effects of reducing fierce competition by increasing differentiation and on the

effects of ‘stealing’ consumers of the competitor by decreasing differentiation. Thereby,

they conceal that restrictions of the firm’s and competitor’s abilities affect strategic prod-

uct positioning. This is unsatisfying – not only because empirical evidence documents

that strategy restrictions are present when choosing a product position, but also because

firms’ behavior and consumers’ surplus are substantially affected by strategy restrictions,

as we will show in this note.

So far, when models predict that two firms choose similar product specifications with

respect to one dimension (minimum differentiation), then the chosen position must be

at the median of the distribution of consumers, which is interpreted as the center of the

market or ‘where the demand is’. In this note, we introduce restrictions of feasible po-

sitions in a model without price competition and observe that under various conditions,

this conclusion does not hold true anymore. In particular, we find equilibria where the

center of the market, would be a feasible product position for one firm, but this firm does

not have an incentive to locate there, due to strategy restrictions of its main competitor.

This suggests that the standardization of products, e.g. the similarity of Samsung’s and

Apple’s tablets, does not inevitably result from consumers’ tastes, but could also reflect a

technological constraint of one of the two firms. In that case strategy restrictions reduce

social welfare, while in another novel case that we study strategy restrictions contribute

to product variety and thereby increase social welfare.

It is empirically well-justified to consider strategy restrictions because they seem ubiq-

uitous in applications of horizontal differentiation. Restrictions have several sources and

take many forms. In addition to technological constraints and the legal environment (e.g.

patents, regulations), overriding corporate strategies can reduce the set of feasible prod-
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uct positions for a firm.1 Models of spatial competition, however, commonly abstract

from the fact that, at least in the short term, the set of feasible product positions is

restricted. This yields our two research questions: How do strategy restrictions affect

product positions of the firms (i.e. equilibrium locations)? What are the welfare implica-

tions of strategy restrictions? We address these questions by using the most basic model:

Two players simultaneously choose a position on a line, while for each of them only some

interval of positions is feasible. We use this simple yet powerful model as a benchmark to

make the arguments clear and outline several model extensions.

We find in the equilibrium analysis that there are three cases to distinguish. In one

case we obtain the standard minimum differentiation result that both firms locate on

the median of the distribution of consumers. In the second case, when the median posi-

tion is feasible for one of the two firms, this firm does not choose it in equilibrium but

locates next to the strategy restriction of its competitor. To our best knowledge, this

outcome, two firms locating next to each other but not at the center of the market, is

new to the literature. We assess welfare by aggregated transportation costs and show

that this novel case is highly inefficient. Transportation costs are even larger than in the

classic case of minimum differentiation (at the center of the market). In the final case

firms minimally differentiate on the boundaries of their restrictions independently of the

location of the median of the distribution of consumers. This independence means that

consumers’ preferences do not influence firms’ decisions in any way. However, this case

tends to induce highest welfare which also exceeds welfare under unrestricted competition.

While equilibrium positions in each case can be characterized by some form of minimum

differentiation, consumers’ preferences only play a vital role in the first case. Thus, our

results differ from previous findings in that preferences of consumers are less dominant in

determining market outcomes when restrictions are present and in that the implications

for welfare are ambivalent, as under restrictions welfare can be both lower and higher

compared to unrestricted competition.

Hence, the contribution of this note is threefold. First, we close a gap in the litera-

ture on spatial competition by providing conditions when and how strategy restrictions

affect equilibrium outcomes. Already 30 years ago, Larry Samuelson pointed to this gap

by noting that “the common assumption that candidates choose freely from the entire

strategy space is an unrealistic one” (cf. Samuelson 1984). However, the effect of strategy

restrictions on equilibrium locations has not been systematically discussed. Second, we

demonstrate the significance of restrictions of feasible strategies for horizontal product

differentiation. We show that under restrictions qualitatively different strategies become

1Specific examples for spatial restrictions in the literal sense are territorial restrictions in distribution,
such as in the case of franchising (Stern et al., 1976), and zoning restrictions imposed by a government
(Datta and Sudhir, 2013). In the application of flight scheduling in the airline market (e.g. Panzar, 1979;
Schipper et al., 2007) strategies are restricted, e.g. by local bans on nighttime flying.
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prevalent, where not the consumer, but the competitor is the first interest. As a result,

restrictions are an essential factor for market outcomes. Third, we derive implications

for consumers and a social planner by assessing social welfare. For instance, our results

imply that if a social planner were in the position to impose restrictions on one firm, e.g.

in order to increase product variety in a minimally differentiated market, it should only

do so if it can impose restrictions on the other firm as well. Moreover, our model of spatial

competition with restricted strategies does not only apply to firms in a market but also

to parties in a political competition.

Related Literature The Hotelling-Downs approach of spatial competition is a widely

used tool in the analysis of product differentiation and of political competition. Models in

this literature can generally be organized into location-cum-prices models which study a

game of location choice before price competition (e.g. Hotelling, 1929; d’Aspremont et al.,

1979; de Palma, 1985; Meagher and Zauner, 2004; Król, 2012; Tabuchi, 2012) and purely

spatial models (e.g. Downs, 1957b; Eaton and Lipsey, 1975; Prescott and Visscher, 1977;

Loertscher and Muehlheusser, 2011) which abstract from endogenous price setting. A

well-known result for location-cum-prices models is that firms maximally differentiate in

a one-dimensional market. This holds in particular for a uniform distribution of consumers

with quadratic transportation costs – a specification that avoids issues of non-existence

(d’Aspremont et al., 1979).2 Generally, whether maximum differentiation occurs depends

on a number of assumptions, including the distribution of consumers (e.g. Tabuchi and

Thisse, 1995; Anderson et al., 1997), the convexity of transportation cost (e.g. Economides,

1986; Osborne and Pitchik, 1987), the elasticity of demand (Böckem, 1994; Xefteris, 2013),

and the presence of an unobserved dimension (Rhee et al., 1992). A caveat of location-

cum-prices models is that they often have to ensure existence of equilibria by assuming

rather simple distributions of consumers and specific functional forms.

This is not true to the same extent for pure spatial models. Pure spatial models are

not only sensible in regulated markets where prices are fixed, but also apply to markets

in which prices are not a dominant marketing instrument. The latter occurs typically

in two-sided markets (Rochet and Tirole, 2003; Armstrong, 2006) such as a market for

newspapers or media markets in general (George and Waldfogel, 2006; Gal-Or and Dukes,

2003). Pure spatial models typically find minimum differentiation under general con-

ditions (Downs, 1957b; Eaton and Lipsey, 1975), but not when an endogenous number

of players sequentially chooses a position (Prescott and Visscher, 1977; Loertscher and

2In a multi-dimensional market, the same specification leads to maximum differentiation with re-
spect to one dimension and to minimum differentiation with respect to all others (Irmen and Thisse,
1998). Moreover, using an evolutionary approach Hehenkamp and Wambach (2010) show that minimum
differentiation with respect to all dimensions emerges in this setting.
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Muehlheusser, 2011). The discourse on maximum versus minimum differentiation has re-

cently caught new fire with novel theoretical insights (Xefteris, 2013) and with empirical

evidence from the laboratory (Barreda-Tarrazona et al., 2011).

Considering the vast amount of literature dealing with the Hotelling-Downs approach,

it is remarkable that the idea of restricting the firms’ strategies plays hardly any role.

Exceptions are the models of Samuelson (1984), Hummel (2010), and Hauser (1988).

Samuelson (1984) analyzes a multi-dimensional model of probabilistic voting and incor-

porates restricted strategies in the following way: Each candidate is endowed with an

initial position and her choice of strategy is restricted within some convex compact set

around this endowment. We follow this approach on how to restrict positions. In the

context of brand positions Hauser (1988) introduces a restriction on feasible positions by

assuming that given positions cannot change their relative order. A similar assumption

is made by Hummel (2010) in the context of political candidates since his model restricts

political candidates from moving more than halfway into the direction of the opponent.3

Within the context of political competition there are additional approaches to incorporate

restrictions of positions (see Samuelson, 1984, and the references therein). Even though

these works use the important idea of strategy restrictions, they do not systematically

discuss the effect of restrictions on equilibrium locations and they focus on the application

to political competition, but not to product differentiation.

Introducing strategy restrictions typically does not qualitatively affect maximum dif-

ferentiation results. For example, in the very common location-cum-price model of uni-

formly distributed consumers facing quadratic transportation costs (d’Aspremont et al.,

1979), strategy restrictions would not change the outcome, apart from the fact that firms

can only maximally differentiate within their feasible sets. Minimum differentiation re-

sults, on the other hand, have to be carefully reconsidered, as we will discuss in the

following.

2 A Model with Restricted Strategies

We define a game between two players L and R, who compete in a one-dimensional

market. The players simultaneously choose a product position in order to maximize their

payoff.

There is a continuum of positions X = [0, 1]. Positions are ordered by the relation ≤
such that we can refer to absolute distances (|x− y|), being closer (|x− y| < |x− z|) or

being in between (x < y < z). We consider a unit mass of consumers who are distributed

on X according to the cumulative distribution function F : X → R+ with full support in

3This is motivated by the idea that a change in political position from a primary to a general election,
so-called ‘flip-flopping’, undermines a candidate’s credibility.
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the corresponding density function: f(x) > 0 for any x ∈ X. Let q := F−1(1
2
) ∈ X be the

median of the distribution, which is also referred to as the ‘median consumer’ (Waldfogel,

2008, p. 568).4 If the distribution satisfies symmetry, i.e. F (x) = 1− F (1− x), then the

median is q = 1
2
.

Consumers are distinguished from firms, or players, whom we denote by L and R.5

Because of technological or other constraints, players’ strategies are restricted in the sense

of Samuelson (1984), i.e. a strategy (product position) sP for P = L,R, cannot be chosen

freely from all the product positions in X but only from some compact convex subset.

Assumption. We define the set of feasible product positions for each player as an interval

within X, i.e. a player P = L,R has the strategy set SP = [sP , s̄P ].

Let S = SL × SR denote the strategy space and let s−P (S−P ) denote the strategy

(set) of the player that is not P . Without loss of generality we let sL ≤ sR.

We assume that the firms’ costs are independent of the chosen product position and

normalized to zero. Moreover, we abstract from price competition because it would lead to

trivial results (under the common set-up), as discussed above. Thus, profit maximization

in this model equals the maximization of market share. Consumers are assumed to buy

one unit at the firm that is closer to them. Let x̂ := sL+sR

2
be the position of an indifferent

consumer. Then the players’ payoffs for a strategy profile sL < sR are as follows:

πL(s) = F (x̂),

πR(s) = 1− F (x̂)

and vice versa for sL > sR. For two equal positions sL = sR we assume that the two firms

split the market equally, i.e. πL(s) = πR(s) = 1
2
. We solve our model with the standard

notion of Nash equilibrium. In one case there will be an open set problem very similar

to Bertrand competition with constant but unequal marginal costs.6 We tackle this issue

by studying epsilon-equilibria as done by Radner (1980) and Dixon (1987).7

Definition (cf. Dixon, 1987). Let ε ≥ 0. s ∈ S is a ε-equilibrium if for P = L,R, there

does not exist a strategy s̃P ∈ SP such that

πP (s̃P , s−P )− πP (s) > ε. (1)

Clearly, for sufficiently large ε every strategy profile is an epsilon-equilibrium. Thus,

4Depending on the application the much more common term ‘median voter’ can be used synonymously.
5As a convention we use the male form for consumers and the female form for players.
6In Bertrand competition there does not exist a smallest price difference to undercut an opponent. In

our model there will not exist a smallest unit of product differentiation.
7Other ways to handle the open set issue would not lead to qualitatively different results.
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L Rs  = s  = q

Figure 1: In Case (I), i.e. q ∈ SL ∩ SR, both players choose the median as their product
position: sL = sR = q. This result equals the result of unrestricted competition.

this notion is sensible for small epsilon only. In particular, for ε = 0 it coincides with the

notion of Nash equilibrium.

3 Equilibrium Positions

To analyze our model we distinguish between three cases, which are distinct and exhaus-

tive.

3.1 Case (I)

In Case (I) we analyze the model when the feasible strategies overlap and the median is

part of this intersection, i.e. q ∈ SL ∩ SR. An example for Case (I) is SL = SR = X, the

classic model of unrestricted strategies. The result of Black (1948) on majority voting

implies that the equilibrium outcome in this location game is minimum differentiation

on the median as illustrated in Figure 1. Because this is an equilibrium in the classic

model of unrestricted strategies, it must also be an equilibrium in our model, since the

set of possible deviations has been reduced. Our first result establishes that there are no

additional equilibria.

Proposition 1. If q ∈ SL ∩ SR, the unique Nash-equilibrium is that both players choose

the median as their product position, i.e. sL = sR = q.

Proof. By the definition of the median q we have F (q) = 1−F (q) = 1
2
. Suppose s is such

that no player chooses the median q. Let P be a player with πP (s) ≤ π−P (s). Deviating

to s̃P = q leads to a payoff of πP (q, s−P ) > 1
2

while πP (s) ≤ 1
2
. Suppose s is such that

exactly one player, P , chooses the median. Then π−P (s) < 1
2
, while πP (q, q) = 1

2
. Finally,

for sL = sR = q any deviation leads to a lower payoff.

In Case (I) we get the classic outcome of minimum differentiation (on the median),

despite strategy restrictions.

As a practical example for this case we can consider the market for credit

cards since neither MasterCard nor Visa seems to be hindered from offering
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a product at the center of the market. Consequently, the services offered by

these two firms should be highly similar.

Minimum differentiation is known to be inefficient since the work of Hotelling (1929).

Given minimum differentiation, the median is the position that minimizes the sum of

distances to all consumers. In that sense the median incorporates the preferences of

the consumers and locating on the median is constrained efficient. Comparative-static

changes in preferences or changes in the sample of consumers would affect the location of

the median and thus the product positions taken by the players, as long as the condition

q ∈ SL ∩ SR still holds, i.e. as long as we are still in Case (I).

3.2 Case (II)

In Case (II) we examine the situation where the feasible strategies SL and SR overlap and

the median is not part of the intersection, i.e. SL ∩ SR 6= ∅ and q 6∈ SL ∩ SR.

Definition 1 (More-Central Player). If there is a player who can choose a product position

which is strictly closer to the median, she is called the more-central player (MC); her

opponent is called the less-central player (LC).

In Case (II) we have to distinguish between two different subcases: In Subcase (IIa)

a more-central player does not exist and in Subcase (IIb) a more-central player exists.

Subcase (IIa) is given if the players’ feasible product positions share a boundary and the

median is beyond this boundary, e.g. q < sL = sR. This case occurs when there is a

technological or legal restriction that hinders both firms in the same way from offering a

product at the center of the market. In Subcase (IIb) the median is not in the strategy

set of the less-central player, e.g. q < sLC , while it might, but need not, be in the strategy

set of the more-central player, i.e. sMC < sLC . A particular example for this subcase is

given if one player is unrestricted, i.e. SP = X, while the other player is restricted such

that she cannot choose the median q /∈ S−P .

Figure 2 illustrates the two subcases and the corresponding equilibrium analysis. The

strategic situation resembles Bertrand competition with constant marginal costs. In the

Bertrand model players can improve by undercutting the opponent’s prices for any price

above the marginal costs; here players can improve by locating closer to the median

for any strategy away from the restriction boundary. In the Bertrand model we have

a unique Nash equilibrium for equal marginal costs and only epsilon-equilibria under

unequal marginal costs. Here, we find a fully analogous result in Subcase (IIa) and an

analogous, but a unique type of epsilon-equilibrium in Subcase (IIb), as Proposition 2

shows.

Proposition 2. Suppose SL ∩ SR 6= ∅ and q 6∈ SL ∩ SR.
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L Rs  = s  = yq

Ls  = y - ε q
Rs  = y

Figure 2: (IIa) if a more-central player does not exist, i.e. none of the players can choose
a product position closer to the median than her opponent, both players take the same
product position on the edge of their restriction toward the median. (IIb) if a more-
central player exists (here: L), the less-central player (here: R) locates on the edge of
her restriction toward the median, while the more-central player approaches this position
from the side of the median (here: from the left).

(i) If a more-central player does not exist, the unique Nash equilibrium is such that both

players take a product position on the edge of their restriction toward the median,

i.e. if q < sL = sR, then s = (sL, sR) is the Nash equilibrium; if q > s̄L = s̄R, then

s = (s̄L, s̄R) is the Nash equilibrium.

(ii) If a more-central player exists, then for any ε > 0, there is an ε-equilibrium such

that the less-central player takes the product position on the edge of her restriction

in direction of the median and the more-central player locates closely next to it in

direction of the median, i.e. if sMC < sLC and q < sLC, then sLC = sLC and

sMC = sLC − ε; if s̄P > s̄−P and q > s̄−P , then s−P = s̄−P and sP = s̄−P + ε, for

some ε > 0.

Proof. (i) Let y be the feasible position which is closest to the median. No player can

improve by relocating from sL = sR = y since relocation has to be in the opposite direction

of the median. Now let ŝ 6= s be a strategy profile where not both players locate on y.

Take a player P such that πP (ŝ) ≤ π−P (ŝ) and relocate her to s̃P = y. This is a strict

improvement (irrespective of whether the other player −P is also located on y).

(ii) Assume sL < sR and q < sR such that L is the more-central player. Suppose L

locates within the feasible set of R, i.e. sL ∈ SR. If πL(s) ≤ 1
2
, L can improve by moving

closer to the median; if πL(s) > 1
2
, R can improve by choosing the same position as L.

Thus, in equilibrium sL < sR. Suppose sR 6= sR, then R can improve by moving to sR.

Thus, in equilibrium sR = sR. The maximal possible payoff for L is then bounded from

above by F (sR). Choosing sL = sR − ε leads to a payoff of F (sR − ε
2
). For small ε, any

difference ε between these payoffs can be undercut. Thus, (sR− ε, sR) is an ε-equilibrium
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for sufficiently small ε. If s̄P > s̄−P and q > s̄−P , then the proof is in full analogy to

above.

As a practical example for Subcase (IIa) consider two neighboring countries,

where a certain product is only legal in one of the two, such as it is the

case for the United States and Mexico with respect to some medication. No

firm can choose a location for a shop (e.g. a pharmacy) at the center of the

market of the country where the product is illegal (e.g. the US). According to

Proposition 2 part (i) each firm chooses a position at the common restriction

(i.e. the border).

As a practical example for Subcase (IIb) we might consider the position of Mc-

Donald’s and Burger King restaurants on the dimension “tasty versus healthy”

food. Arguably, by its history (in particular its previous marketing activities)

Burger King is restricted from locating at the median position, which is more

healthy than what Burger King can credible represent. If the restriction of

McDonald’s in this respect is not as tight, then McDonald’s is the more-central

player and thus approaches Burger King from the healthy side (according to

Proposition 2 part (ii)). Consistent with reality, the positions of McDonald’s

and Burger King would not strongly differ, but McDonald’s would be the clear

market leader.

In Subcase (IIa) both players locate as closely as possible to the median, which is

qualitatively similar to the standard result of Case (I). In Subcase (IIb) this only holds for

the less-central player. For the more-central player, however, it is possible that the median

is a feasible product position, but this central position will never be chosen. Instead, the

more-central player minimally differentiates to the opponent’s strategy restriction. The

practical implication of this scenario is that products are sold which do not fit to the

median consumer’s taste, although this would be a feasible position for one of two firms.

This is highly inefficient, as we will see in Subsection 3.4.

3.3 Case (III)

In the remaining Case (III) we examine the model with restricted strategies when the

feasible strategies do not overlap, i.e. SL ∩ SR = ∅.

Proposition 3. If SL ∩ SR = ∅, then sL = s̄L and sR = sR are strictly dominant

strategies.

Proof. For any strategy profile with sL < s̄L, changing to s̃L = s̄L is a strict improvement

because it shifts the indifferent consumer x̂ to the right. Analogously, for player R.
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qLs
Rs

Figure 3: Equilibrium positions in Case (III), i.e. if SL ∩ SR = ∅. Both players locate as
closely as possible to the opponent’s strategy set. Equilibrium strategies are independent
of the position of the median q and thus independent of consumers’ preferences.

Proposition 3 shows that in the unique Nash equilibrium both players locate at the

edge of their strategy set in direction of the opponent as illustrated in Figure 3. While

the result is trivial, it has a remarkable implication.

Unlike Case (I) and Case (II), equilibrium positions in Case (III) do not depend on

the median. Even more generally, consumers preferences do not at all affect the position

of the players, as noted in Remark 3.3.

Remark. Equilibrium positions in Case (III) are independent of consumers’ preferences

(represented by F or q).

Consequently, firms might offer products which do not respect consumers’ needs. For

instance, it is possible, as in Case (II), that the median position is available for one of the

two players (such as in Figure 3), but she does not choose it.

As a practical example for this case we suggest presidential elections in the

United States. This example of political competition is often used to illustrate

unrestricted spatial competition where both candidates choose the median

position. It is, however, questionable to assume that strategies of a Republican

and a Democratic candidate are unrestricted or to suppose – which is shown

to be sufficient for the same outcome (c.f. Case (I)) – that feasible strategies

really overlap at the median. It seems equally plausible to assume that feasible

strategies of a Republican and a Democratic candidate do not overlap such

that Case (III) applies. Then the presidential candidates choose a position

as closely as possible toward the opponent without ending up at the same

position.

3.4 Welfare Implications

In our model producers’ surplus is constant because firms play a zero-sum-game for market

share. Therefore, welfare effects can be discussed solely on the basis of the consumers’

surplus, whose utility is decreasing in the individual costs of transportation. Welfare is
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hence negatively measured by the total transportation costs TC(sL, sR), which is the sum

of distances of each consumer to a closest player.8 Formally, for sL ≤ sR,

TC(sL, sR) :=

∫ x̂

0

|sL − x|f(x)dx+

∫ 1

x̂

|sR − x|f(x)dx. (2)

To ease the exposition, let us assume here that consumers are uniformly distributed, i.e.

f(x) = 1 for all x. Then (2) simplifies to TC(sL, sR) = 3
4
(sL)2 + 3

4
(sR)2− 1

2
sLsR− sR + 1

2
.

The global optimum is attained for sL = 1
4

and sR = 3
4
, which yields TC(1

4
, 3
4
) = 1

8
.9 We

will use this social optimum as a benchmark to assess efficiency of the three cases. In

particular, to quantify inefficiency we report the so-called Price of Anarchy (henceforth:

PoA), which is attained by dividing the “worst” equilibrium, i.e. the equilibrium strategy

profile with maximal transportation costs, by the globally minimal transportation costs

(Koutsoupias and Papadimitriou, 2009).10

In Case (I) both players locate on the median q(= 1
2
). This yields total transportation

costs of TC(q, q) = 1
4

and, hence, a PoA of 2.

In Subcase (IIa) both players choose the same location, say y, which was their common

boundary in direction of the median. Since in Subcase (IIb) players differentiate only by

some ε, which is vanishingly small for a notion of epsilon-equilibrium close to the notion

of Nash equilibrium, we can approximate welfare properties of this subcase also by equal

positions sL = sR = y. In an extreme example strategies are restricted to be at an

endpoint of the line, e.g. SL = SR = {0}, which yields the globally maximal transportation

costs of 1
2
. More generally, transportation costs are U-shaped in the common location y

and the closer y to the median, the lower the transportation costs. Thus, in Case (II) the

transportation costs lie in the interval (1
4
, 1
2
], which yields a PoA in the interval (2, 4]. The

intervals are open on one side because the median q cannot coincide with the common

location y when we are in Case (II).

The unique equilibrium in Case (III) is that players choose sL = s̄L and sR = sR. By

coincidence this choice may be socially optimal (which happens when s̄L = 1
4

and sR = 3
4
),

but there are also examples with an almost maximal transportation costs, e.g. if SL = {0}
and SR = {0.001}. Therefore, in Case (III) the transportation costs lie in the interval

[1
8
, 1
2
) with a corresponding PoA in the interval [1, 4). If we focus, however, on situations

8In models where transportation costs are quadratic in distance it is common to use the sum of squared
distances (e.g. d’Aspremont et al., 1979; Meagher and Zauner, 2004; Król, 2012). Since our model is more
general in this respect, we use linear transportation costs to measure efficiency. The choice of efficiency
criterion, however, is not crucial for our discussion.

9By the classic ‘business stealing’ argument, the efficient strategy profile is not an equilibrium if at
least one player can move closer to the median.

10Likewise the Price of Stability refers to the “best” equilibrium in relation to the social optimum.
There is no need to use both measures in our model since we have uniqueness of equilibria, up to small
differences between a multitude of epsilon-equilibria in Subcase (IIb).
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CASE Transportation Costs Price of Anarchy Market Share

Case (I) 1
4

2 50%

Case (IIa) (1
4
, 1
2
] (2, 4] 50%

Case (IIb) (1
4
, 1
2
] (2, 4] (50%− 100%)

Case (III) [1
8
, 1
2
) [1, 4) [50%− 100%)

Case (III+) [1
8
, 1
4
] [1, 2] [50%− 75%]

Table 1: Summary of welfare properties of equilibria for different cases under the assump-

tion of a uniform distribution of consumers. Market Share stands for the equilibrium

market share of the larger competitor, which measures inequality between firms.

where the median is between the two strategy sets, i.e. s̄L < q < sR, e.g. because the

players’ restrictions are symmetric with respect to q = 1
2
, then inefficiency is bounded.

The worst case example is then SL = {0} and SL = {1}, which yields transportation

costs of 1
4

and a PoA of 2. Similarly, if we suppose that the difference between the two

strategy sets are at least one third, i.e. sR − s̄L ≥ 1
3
, the same conclusion holds. Table 1

summarizes the welfare properties of the three cases, where Case (III+) stands for Case

(III) under the qualification that at least one of these two properties, either the median is

between the restrictions or the restrictions differ by at least one third, holds. We observe

that the three cases can be ranked according to the welfare they induce in equilibrium as

follows:

Case (III+) � Case (I) � Case (II).

This holds with respect to the cardinal criterion of total transportation costs. Consider-

ing the ordinal notion of Pareto efficiency, we come to a similar conclusion. Equilibrium

positions in Case (I) and Case (II) are not Pareto efficient, because one of the two min-

imally differentiated players could be relocated to shorten distances of some consumers

without harming all others. On the other hand, equilibrium positions in Case (III) are

Pareto efficient. We can summarize the welfare implications of strategy restrictions by

comparing unrestricted strategies SP = X with restricted strategies SP ⊂ X. Interest-

ingly, unrestricted competition where all positions are feasible (which is a special example

of Case (I)) leads to a worse outcome than Case (III+) that implies that restrictions are

strong enough to exclude some positions from the feasible set of both firms. Moreover,

if only one player is restricted, while the other can cover the entire spectrum (which is a

special example of Case (II)), the outcome is even worse. Thus, if a social planner were

in the position impose a restrictions of one firm, it should only do so if it can impose a

restriction on the other firm as well.

Let us finally discuss the consequences for firms. As mentioned above, for firms there
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is no issue of inefficiency in our model, but we can discuss their inequality. Market

shares are equal in equilibrium in Case (I) and in Subcase (IIa). In Subcase (IIb), the

more-central player receives a larger proportion of the consumers. Finally, in Case (III)

player L receives a higher payoff if and only if s̄L is closer to the median than sR. These

observations are also indicated in Table 1, where the last column reports the equilibrium

market share of the largest competitor. Moreover, it can easily be shown that a player P

receives at least half of all consumers

(a) if her strategy set includes the median, i.e. q ∈ SP , or

(b) if her strategy set is a superset of the opponent’s, i.e. SP ⊇ S−P .

In that sense, a strategy set, e.g. a technology, is particularly valuable if (a) it allows to

serve the center of the market and if (b) it is more flexible than the opponent’s.

4 Discussion

We have introduced restrictions of feasible positions for two players who compete in a

one-dimensional market. A striking insight is that in the case where feasible positions do

not overlap (Case III) equilibrium choices are fully independent of consumers’ preferences.

Thus, in that case firms are predicted to ignore the consumers and base their product

position on the competitor’s strategy only. Still, welfare tends to be high since strat-

egy restrictions contribute to product variety in this case. Another novel case emerges

when one firm’s feasible positions are more central than the other’s while they still over-

lap (Case IIb). Then firms minimally differentiate away from the center of the market,

which leads to highest transportation costs and thus to lowest welfare. Both these cases

document that product positioning under strategy restrictions lead to qualitatively new

insights, which we can observe even in this particularly simple model.

Our analysis naturally applies to short-term competition where product positions un-

derlie fixed restrictions. In a longer term firms can be assumed to invest into changes of

their feasible positions such that restrictions are endogenously determined. Since choos-

ing the median guarantees a firm to receive half of the consumers (cf. Property (a) in

Subsection 3.4), it seems that in a longer term, the standard result (of Case I) is preva-

lent. However, this fails to be true in several settings including the following two. First,

consider an incumbent firm who is able to react to entrants and whose consumers do not

switch to an entrant if both firms choose the same position. Then the optimal choice

of restrictions of the incumbent is to span an interval at the center of the market. The

entrant does not locate within the incumbent’s feasible set, but approaches it from one
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side.11 After the incumbent’s reaction the market outcome corresponds to Case (IIb),

which leads to lowest welfare. Second, consider a firm investing into patents that protect

a certain range of product specifications. The choice of a set of patents P = [P , P̄ ] re-

stricts the feasible strategies of a competitor to X \ P = [0, P ) ∪ (P̄ , 1]. Given that the

competitor has to first decide whether to approach the patent from the left or from the

right, e.g. by developing the necessary technology, the patent holder can locate on the

corresponding boundary of its patent and would choose a broad set of patents around the

median in the first place. Again, the equilibrium outcome coincides with the outcome of

Case IIb.

The practical prediction of this theoretical outcome is that the firms choose highly

similar product specifications, which are far from an ideal product in the eyes of most

of the consumers. This holds despite the fact that a superior product would be feasible

for one of the two firms, which is the more-central player, the incumbent, or the patent

holder, in the respective model.

As many models of spatial competition, our model also applies to political competition.

Let us now change the interpretation from firms and consumers to political candidates

and voters. The left-right spectrum stands for possible political platforms from left-wing

to right-wing positions. Political candidates also have a restricted set of feasible positions

(Samuelson, 1984) for two reasons. First, a candidate has to ‘maintain a loyalty’ to its

political party. These parties only cover some part of the political spectrum, they need

sponsors and supporters, and are relatively ideologically immobile (Downs, 1957a). Sec-

ond, the own history of public perception restricts the political positions that a candidate

can credibly represent. A similar set of credibility restrictions is based on personal char-

acteristics (Samuelson, 1984), e.g. a young candidate cannot credibly present himself as

highly experienced.

In the classic model the main result is often summarized by the role of the so-called

median voter. At least two forms of the median voter theorem are popular (Congleton,

2002). The weak form of the median voter theorem claims that the median voter always

casts his vote for the policy that is adopted. As it is easy to show, this is still true in the

model with restricted strategies. The strong form of the median voter theorem says that

the median voter always gets his most preferred policy. With restricted strategies this is

obviously not possible if q /∈ SL∪SR. However, even if the median position is available, it

is not always chosen such as in Case (IIb) or in Case (III). Under unrestricted strategies

this could not be an equilibrium because each candidate could beneficially deviate toward

the median voter. If one candidate is incapable of such a move, however, the other can-

didate lacks incentive to do so. Thus, restrictions of political platforms do severely affect

11A comprehensive and formal discussion of such a model can be requested from the authors.
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political campaigns and the outcome of two-party competition.

Our model uses several standard simplifications which have been relaxed for the classic

model and are also worth studying under restricted strategies. First, the assumption of

perfectly inelastic demand could be relaxed such as in Anderson and Glomm (1992) and

George and Waldfogel (2006). Second, we have studied a one-dimensional market. A

natural extension is to consider multi-dimensional product differentiation. In such a model

Irmen and Thisse (1998) find that minimum differentiation is prevalent in all dimensions

but one. While in each dimension with minimum differentiation both firms cluster on

the median, our analysis indicates that this result would not generalize to restricted

strategies. Thus, our one-dimensional analysis represents the first step to understand

multi-dimensional competition. Nevertheless, additional strategic effects may emerge in

multi-dimensional competition with strategy restrictions. Another important extension

is to consider larger classes of consumers’, respectively voters’, preferences. Our results

do directly extend to single-peaked preferences on tree graphs (Demange, 1982), which is

a much more general class of preferences. However, the extension to graphs that include

cycles, e.g. grids or hypercubes, as they have been studied in Nehring and Puppe (2007)

or Buechel and Roehl (2015), is an open problem. Finally, we have restricted attention

to the classic case of two players. While for an exogenous number of players, the results

under unconstrained competition resemble the two player case (“minimum clustering,”

Eaton and Lipsey, 1975), this is not true for an endogenous number of players (Prescott

and Visscher, 1977; Loertscher and Muehlheusser, 2011). Extending our model into these

directions is left for future research.
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Supplemental Analysis

Abstract

This document contains some supplemental material for the note “Restrictions in Spatial

Competition: The Effects on Firms and Consumers.” We introduce and discuss a particular

model to substantiate the assertion made in the note that the novel cases can also emerge

when restrictions are endogenously, not exogenously, determined. In the note we refer to

this material in Section 4 in footnote 11.

A Model with Endogenous Choice of Restrictions

We consider here a simple variant of the standard market entry game. PositionsX and consumers

are as specified in the note. There are now two periods t = 0, 1. In period 0 a firm F1 is a

monopolist in the market. In period t = 1 either F1 stays monopolist or a second firm F2

enters. The sequence of actions is as follows. (i) F1 chooses a set of feasible strategies S1 and

some initial position s1
0 ∈ S1. (ii) F2 chooses whether to enter the market and if it enters it

chooses some position s2 ∈ X.1 (iii) F1 chooses a position s1 ∈ S1 to compete against F2. In

a monopoly situation F1 serves all consumers, in a duopoly with s1 6= s2 consumers are split

as in the static model. If s1 = s2, we assume that all consumers stay at the incumbent and do

not switch to the entrant.2 One interpretation for this assumption is that consumers face small

switching costs which cause inertia. Let π : [0, 1] → R+ be a continuously increasing function

that assigns a profit to any mass of consumers. Moreover, let 0 < fentry < π(1
2) be the fixed

costs of market entry. For F1, let C : [0, 1]→ R+ be an increasing function that represents the

costs of flexibility. We assume that the larger the range [s1, s̄1], the higher these costs. Moreover,

let δ ∈ (0, 1] be F1’s discount factor. The payoffs of F1 and F2 are then

Π1,Π2 =



π(1)− C(s̄1 − s1) + δπ(1− F (x̂)), π(F (x̂))− fentry, if s2 < s1

π(1)− C(s̄1 − s1) + δπ(F (x̂)), π(1− F (x̂))− fentry, if s2 > s1

π(1)− C(s̄1 − s1) + δπ(1), π(0)− fentry, if s2 = s1

π(1)− C(s̄1 − s1) + δπ(1), π(0), if no-entry.

We now derive a subgame perfect Nash equilibrium (SPNE) by backward induction. Because

of the open set issue this will be a “perfect epsilon-equilibrium” (Radner, 1980).

(iii) If F2 does not enter, then the choice s1 ∈ S1 is arbitrary. If F2 enters and s2 ∈ S1, then s1 = s2 is

profit maximizing (because then F1 receives all consumers). If F2 enters and s2 /∈ S1, then s1 = s1

when s2 < s1 and s1 = s̄1 when s2 > s̄1 is profit maximizing for F1.

1After observing F1’s first move, there would be no incentive to build a strategy set that consists of more than
one position.

2The result for the convention that the two firms split the market equally will be trivially that both firms
choose the median. This observation stays true in the model variation, where firms first simultaneously choose
feasible strategies and then simultaneously choose positions within their feasible set.
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(ii) Given optimal behavior of F1 in decision (iii), we receive the following payoffs for different decisions

of F2 at stage (ii):

Π2 =



π(0)− fentry, if s2 ∈ S1

π(F (s1 − ε
2 ))− fentry, if s2 = s1 − ε

π(1− F (s̄1 + ε
2 ))− fentry, if s2 = s̄1 + ε

π(0), if F2 does not enter

for ε > 0. Choosing s2 ∈ S1 is strictly dominated by not entering. In the two central cases, the

payoff of F2 is decreasing in ε. Thus, we have an open set problem as in Case (IIb) of the short-term

analysis. The supremum here is F (s1) respectively 1− F (s̄1) and it can be approached by letting

ε shrink. Therefore F2 enters if

π(max{F (s1), 1− F (s̄1)}) > fentry (1)

and chooses a sufficiently small ε. Otherwise, i.e. if Condition (1) does not hold, F2 does not enter.

(i) To derive the optimal behavior of F1 in stage (i), we distinguish between the best entry deterring

and the best entry admitting choice. Anticipating the behavior in stage (ii) and (iii) a strategy set

S1 is entry deterring if π(F (s1)) ≤ fentry and π(1− F (s̄1)) ≤ fentry. Let y := F−1(π−1(fentry)),

i.e. the rightmost position that still does not allow for profitable entry to the left and, similarly,

ȳ := F−1(1 − π−1(fentry)).3 Then the best entry deterring choice is S1 = [y, ȳ]. Note that y is

increasing in fentry, i.e. the larger the entry costs, the smaller the necessary flexibility to deter

entry.

The best choice of S1 given that F2 enters is the solution to the following maximization problem:

max
s1,s̄1

π(1)− C(s̄1 − s1) + δπ(1−max{F (s1), 1− F (s̄1)}). (2)

Since any choice such that F (s1) 6= 1−F (s̄1) is a “waste” of flexibility costs, we have in equilibrium

F (s1) = 1 − F (s̄1). Thus, we can substitute s1 = F−1(1 − F (s̄1)) to rewrite the maximization

problem in dependence of one variable only:

max
s̄1∈[q,ȳ]

π(1)− C(s̄1 − F−1(1− F (s̄1))) + δπ(F (s̄1)) (3)

A choice s̄1 > ȳ is excluded by assumption because it deters entry and the last profit is the

simplification of π(1− (1− F (s̄1)).

This maximization problem (3) incorporates the trade-off between leaving few consumers for a

potential entrant (large s̄1) and saving flexibility costs (small s̄1). The solution to this problem

depends on the specifications of the cost function C, of the entry costs fentry, of the payoff function

π, and of the distribution of consumers F , but it certainly exists because we maximize a continuous

function over a compact set. Let z̄ be a solution to this problem (3), be it an interior solution

(z̄ ∈ (q, ȳ)) or a boundary solution (z̄ = q or z̄ = ȳ). Let z := F−1(1 − F (z̄)). Then F1’s profit

maximizing behavior under entry and no-entry of F2 leads to the following payoffs:

Π1 =

π(1)− C(ȳ − y) + δπ(1), if S1 = [y, ȳ]

π(1)− C(z̄ − z) + δπ(F (z̄)), if S1 = [z, z̄]

3F and π are strictly increasing continuous functions such that they can be inverted.
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The specific functional forms determine which choice leads to higher payoff and, hence, F1’s choice

in stage (i). Inspecting the two equilibrium payoffs above reveals that entry deterrence becomes

relatively more attractive for lower costs of flexibility, for higher costs of entry, and for a larger

discount factor. In Example 1 we illustrate how these model parameters determine the equilibrium

path.

From the backward induction exercise we learn first of all that there always exists a sub-

game perfect epsilon-equilibrium. Moreover, there are two types of these equilibria, one entry

admitting one entry deterring, which both satisfy the following two properties.

(a) q ∈ S1 ⊆ [y, ȳ], i.e. F1 chooses a feasible set at the center of the market within certain

boundaries and

(b) F (s1) = 1− F (s̄1), i.e. the ‘niches’ left for F2 at both sides of the center are of equal size.

In the entry deterring equilibrium, (i) F1 chooses S1 = [y, ȳ], (ii) F2 does not enter, and (iii)

F1’s final position s1 is arbitrary within S1 because it acts as monopolist. An entry deterrent

F1 gains π(1)−C(ȳ− y) + δπ(1). Thus, it has the cost of flexibility C(ȳ− y) to keep a threat to

potential entrants. This is similar to a threat of a price war, but this threat is credible because

after investments into flexibility have been made, a ‘minimal differentiation war’ is costless in our

model. Welfare depends on the exact location of s1 ∈ S1 since the closer s1 to the median, the

smaller the total transportation costs. Thus, the size of the feasible set S1 not only determines

the cost of flexibility, but also provides an upper bound for the transportation costs. Since the

size of F1’s restriction is increasing in F2’s costs of entry fentry, entry barriers might even be

considered as welfare enhancing.4 Similarly, low marginal costs of flexibility increase the set of

feasible positions S1 and thus relax the upper bound of transportation costs. By property (a)

this boundary for total transportation costs also applies to the entry admitting equilibrium.

The entry admitting equilibrium path is as follows: (i) F1 chooses S1 = [z, z̄] such that z

solves (3), i.e. it optimizes the trade-off between low costs of flexibility and a large market share;

(ii) F2 enters and chooses an adjacent position to F1’s restriction, i.e. s2 = s1 − ε, respectively

s2 = s̄1 + ε; and (iii) F1 reacts with choosing its restriction adjacent to s2, i.e. s1 = z or s1 = z̄.

Observe that the outcome of this dynamic model corresponds to Case (IIb) of the static analysis,

where F1 is in the role of the more-central player. We discussed in Subsection 3.4 of the note

that this is the case with potentially high inequality and low welfare. In given examples, the

specific inequality and the total transportation costs are determined by the size of the interval

S1 such that we get the following comparative static effects. Both equality of firms’ payoffs and

welfare are increasing in F1’s marginal costs of flexibility (called c in Example 1 below) and in

F1’s discount factor δ. In the worst situation, F1 values the second period highly (δ = 1), while

flexibility is relatively cheap. Then it chooses a large feasible set S1 with only small niches left

for F2 such that market shares are highly unequal, while consumers’ transportation costs are

large because two similar products away from the center of the market are offered. Of course,

this can only be an entry admitting equilibrium if F2’s costs of entry fentry are sufficiently low.

4The intuition is that low costs of entry lead to costly investments into flexibility that allow the incumbent to
offer products which are not close to the center of the market.
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To study how costs of market entry and other model parameters determine which equilibrium

is played and to illustrate further comparative static effects, we use a specific example for which

an explicit solution can be easily obtained.

Example 1. Consider the special case of uniform distribution of consumers, i.e. F (x) = x,

quadratic costs of flexibility, i.e. C(r) = cr2 with cost parameter c, and linear payoff function,

i.e. π(a) = a. From (1) we get that F2 enters if max{s1, 1 − s̄1} > fentry. Moreover, let

fentry < 3
8 , which in this case (π is the identity function) can be interpreted as the market share

that is necessary to make market entry profitable. F1 can optimally deter entry by choosing

s1 = y = fentry and s̄1 = ȳ = 1 − fentry. The optimal choice of F1 given that F2 enters is the

solution to the maximization problem (cf. (2)), which simplifies to

max
s̄1∈[ 1

2
,1−fentry ]

1− c(2s̄1 − 1)2 + δs̄1. (4)

Analogous to Eq. (3), the main idea of the simplification is that best actions satisfy here s1 =

1 − s̄1. If fentry > 1
2 −

δ
8c , then we have the boundary solution z̄ = ȳ = 1 − fentry and

z = y = fentry. In that case entry admission is never profitable and we have the entry deterring

equilibrium. On the other hand, if fentry ≤ δ
8c , then the unique solution to this maximization

problem is z̄ = 1
2 + δ

8k . In that case we have to compare the payoff of F1 under the optimal

entry admitting choice S1 = [1
2 −

δ
8k ,

1
2 + δ

8k ] with the payoff of the optimal choice that deters

entry S1 = [fentry, 1−fentry]. Low enough entry costs fentry, high marginal costs of flexibility c,

as well as low enough valuation of the future δ, make the entry admitting choice of restrictions

more profitable than entry deterrence.

For instance, for c = 1 and δ = 0.8, F1 prefers to admit entry of F2 if fentry < 1
5 , i.e. if the

required market share to make entry profitable is below 20%. In that case we get the following

equilibrium path: (i) F1 chooses S1 = [0.4, 0.6] and s0 ∈ S1 arbitrary, e.g. s0 = 0.5 = q.

F2 enters with strategy s2 = 0.4 − ε (or with s2 = 0.6 + ε) for some small ε > 0. F1 reacts

with s1 = 0.4 (respectively, s1 = 0.6). The market share of F1 is approximately 60%, while F2

receives approximately 40%. The outcome is inefficient for two reasons. First costly investments

into flexibility are not justified by some welfare benefit. Second, F1 locates at the position within

S1 that actually maximizes total transportation costs.

There is an alternative interpretation for the model set-up of this section. Consider the

incumbent’s investment into flexibility as investment into patents that protect its initial product

s1
0. Specifically, the choice S1 = [s1, s̄1] can be interpreted as restricting the feasible strategies

of a potential entrant, i.e. F2’s strategy set is restricted to X \ S1 = [0, s1) ∪ (s̄1, 1]. The model

results in an entry deterring or an entry admitting equilibrium as described above.
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